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One of the cornerstones of elementary field theory is the characterization of the
real numbers which are constructible using only a ruler (without marks) and a
compass. This characterization leads to the impossibility of doubling the cube,
trisecting an angle or squaring the circle using only those tools (see chapter 3,
section 3 in [4] or chapter V, section 1 in [7]). Nevertheless, even the ancient Greeks
were aware of the possibility of solving those problems using other techniques like
mechanical procedures or transcendental curves (see [5] for instance). Here we will
adopt a different - and somewhat more rigorous - point of view, in particular we
will be interested in characterizing the real numbers constructible by paper folding.
For slightly different approaches we recommend the reading of [1] and chapter 10,
section 3 in [3]. For further relations between origami and mathematics book [6]
might be worth reading.

As when working with ruler and compass, we will fix a couple of points in the
euclidean plane R2 which will determine both our origin and ‘unit segment’. Then
the steps that we are allowed to do during any construction are the following:

i) To draw a line connecting two points already constructed.
ii) To find the intersection point of two constructible lines.
iii) To construct the perpendicular bisector of the segment connecting two con-

structible points.
iv) To draw the line bisecting any constructed angle.
v) Given a constructed line l and constructed points P and Q, then it is

possible to construct a line passing through Q and reflecting P onto l.
vi) Given constructed lines l and m and constructed points P and Q, then

whenever possible, a line reflecting simultaneously P onto l and Q onto m
can be constructed.

Exercise.

(1) Show that steps i) to v) can be performed using ruler and compass.
(2) Show that the steps allowed in ruler and compass constructions can be

performed by paper folding.

Definition. An element x ∈ R≥0 is said to be origami constructible if, starting
with the unit segment and using only operations i) to vi), it is possible to construct
a segment of length x. By definition an element x ∈ R<0 is origami constructible
if and only if so is −x.

In what follows we will consider the set O = {x ∈ R | x is origami constructible}.
From the previous exercise and the properties of ruler and compass constructions
we have the following.
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Proposition. O is a subfield of R and an extension of Q. Moreover, if 0 < a ∈ O,
then

√
a ∈ O.

Now we will turn again to step v). Let constructible line l and constructible
points P and Q be given, then we consider a parabola with directrix l and focus P .
We can now construct (see figure 1), if it exists, a tangent to the parabola passing
through Q. By well-known geometric properties of the parabola, this line reflects
P onto l as desired.

P

Q

lP ′

Figure 1. A closer look at step v).

Once we have a better understanding of step v) we will look at step vi). It can
be seen as two simultaneous applications of step v) thus, if constructible lines l
and m and constructible points P and Q are given, step vi) allows us to construct
(if it exists, of course) the common tangent to the parabolas with given data as
directrices and foci. Let us make a more analytic approach. We will consider the
case when our parabolas have equations:(

y − 1
2
a

)2

= 2bx

y =
1
2
x2

Now consider a simultaneous tangent with slope µ meeting these parabolas at the

respective points (x0, y0) and (x1, y1). By definition µ =
y1 − y0

x1 − x0
, while some easy

differentiation yields to µ = x1 =
b

y0 − 1
2a

, y1 =
1
2
x2

1 and x0 =

(
y0 − 1

2a
)2

2b
. Finally

substituting this data in the former expression for µ one obtains that

µ3 + aµ + b = 0.

So we have seen that if a and b are origami constructible numbers, we can construct
a line whose slope is a real root of µ3 +aµ+ b. In particular, as the constructibility
of a line implies the constructibility of its slope, the following holds.

Proposition. If a, b ∈ O and u ∈ R is a root of x3 + ax + b, then u ∈ O.
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Remark. Recall that every cubic y3 +px2 +qx+r can be reduced doing x = y+
p

3
to one of the form x3 + ax + b. Then, our previous proposition shows that we can
construct the real roots of every cubic polynomial. In particular we also have that
if a ∈ O and 3

√
a ∈ R, then 3

√
a ∈ O.

Now, given a field extension F/Q with F ⊆ R we will say that:
i) A line l belongs to F if it passes through two points with coordinates in

F . Equivalently if it passes through a point with coordinates in F and its
slope is either ∞ or it belongs to F .

ii) A parabola P belongs to F if its focus has coordinates in F and its directrix
belongs to F .

Keeping this definition in mind we can present the following lemma, whose proof
will be left as an exercise.

Lemma. Let F be a field with Q ⊆ F ⊆ R, and let l be a line in R2 and P a
parabola in R2. Then:

(1) l belong to F if and only if there are a, b, c ∈ F such that l = {(x, y) ∈
R2 | ax + by + c = 0}

(2) If P belongs to F , then there are a, b, c, d, e, f ∈ F with b2 = 4ac and

det

a b
2

d
2

b
2 c e

2
d
2

e
2 f

 6= 0 such that P = {(x, y) ∈ R2 | ax2 + bxy + cy2 + dx +

ey + f = 0}. The converse is true if F is closed for square roots.

Now, we are ready to prove the following proposition.

Proposition. Let F be a field with Q ⊆ F ⊆ R. Then:
(1) If l1 and l2 are nonparallel lines that belong to F , then the coordinates of

l1 ∩ l2 are in F .
(2) If l1 and l2 are lines that belong to F , then there exist u, v ∈ R with u2, v2 ∈

F such that the line bisecting the angle between l1 and l2 belongs to F (u, v).
(3) If P ∈ R2 is a point with coordinates in F and P is a parabola that belongs

to F , then there exists u ∈ R with u2 ∈ F such that the lines tangent to P
passing through P belong to F (u).

(4) If P1 and P2 are parabolas that belong to F , then there exist u, v, w ∈ C
with u2, v2 ∈ F and w3 + u2w + v2 = 0 such that the common tangent (if
it exists) to P1 and P2 belongs to F (u, v, w) ∩ R.

Proof. Just some boring computations together with the previous lemma and the
form of the solutions to quadratic equations. Details will be left to the reader. �

Theorem. Let a ∈ R, then a ∈ O if and only if there are 0 ≤ n ∈ Z and subfields
F0, F1, . . . Fn of R such that Q = F0 ≤ F1 ≤ · · · ≤ Fn, [Fi : Fi−1] = 2 or 3 for any
1 ≤ i ≤ n and a ∈ Fn. In particular, if a ∈ O, then [Q(a) : Q] = 2r3s for some
0 ≤ r, s ∈ Z.

Proof. If a ∈ O, then we can construct it starting from the ‘unit segment’ by
successive applications of steps i) to vi). The previous proposition shows that at
each step the coordinates of the new point are either in the same field where the
coordinates of the previous points are, or in a quadratic extension, or in a quadratic
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extension of a quadratic extension or in a cubic extension of various quadratic ones.
In any case the result holds.

Conversely, let us suppose that Fi = Fi−1(ui) with u2
i ∈ Fi−1 and ui /∈ Fi−1

(quadratic extension) or u3
i + aui + b = 0 for some a, b ∈ Fi−1 (cubic extension).

Obviously F0 = Q ⊆ O, moreover if Fi−1 ⊆ O then u2
i ∈ O implies ui ∈ O (O is

closed for square roots) and u3
i + aui + b = 0 with a, b ∈ O implies ui ∈ O (O is

closed for roots of cubic equations) and, consequently, Fi ⊆ O. Therefore Fn ⊆ O
and since a ∈ Fn the result holds.

Finally, from [Fn : Q(a)][Q(a) : Q] = [Fn : Q] = 2r3s, the last assertion follows.
�

Remark. As in the case of ruler and compass constructions we could prove a
converse with some use of ‘Galois Theory’. It can be proved that a real number a
is origami constructible if and only if [K : Q] = 2r3s with K being the splitting
field of its minimum polynomial over Q.

Corollary. If C = {x ∈ R | x ruler and compass constructible}, then we have that
Q ⊂ C ⊂ O ⊂ R.

Corollary. The classical problems of doubling the cube and trisecting the angle are
solvable by paper folding.

Proof. It is trivial as they only involve the resolution of cubic equations. �

The preceding corollary shows the possibility of solving those problems. It states
the existence of a paper folding construction which calculates 3

√
2 or that trisects

a given angle but, as it often happens in mathematics, it does not give any clue
about how to find such a construction. Just to convince ourselves we will present
now those constructions.

l1

l2

P1

P2

P1

P2X

Y

Figure 2. Doubling the cube.

Take a square of paper and divide it horizontally into three equal parts. Fold it
in such a way that point P1 reflects onto line l1 and P2 onto l2 (see figure 2).

Exercise. Show that
X

Y
= 3
√

2.

Now, take a square of paper and put any angle α between
π

4
and

π

2
in the

bottom left corner of the paper. Divide the paper horizontally into two parts and
then divide the half below again into two parts. Then, fold the paper in such a way
that P1 reflects onto l1 and P2 onto l2 (see figure 3).
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Figure 3. Trisecting an angle.

Exercise. Show1 that β =
2
3
α.

Finally we will characterize the regular polygons which are constructible by paper
folding. We have the following.

Proposition. The regular polygon of n sides is constructible by paper folding if
and only if n = 2r3sp1 . . . pt where 0 ≤ r, s, t ∈ Z and p1, . . . , pt are distinct primes
of the form pi = 2ai3bi + 1.

Proof. Let us denote the regular polygon of n sides by P (n). Then, it is clear that

P (n) is constructible by paper folding if and only if cos
2π

n
∈ O.

First note that if m|n and P (n) is constructible, then so is P (m). On the
other hand, if (m,n) = 1 and both P (n) and P (m) are constructible, then so
is P (mn). In fact, it can be seen (we leave some details as an exercise) that

Q
(

cos
2π

mn

)
= Q

(
cos

2π

m
, cos

2π

n

)
⊆ O. These considerations allow us to reduce

to the primary case.
Obviously P (2r) and P (3s) are constructible for every 0 ≤ r, s ∈ Z, so let p 6= 2, 3

be a prime. If we put z = e
2πi

p , then cos
2π

p
=

z + z

2
. As [Q(z) : Q(z + z)] = 2 and

[Q(z) : Q] = p − 1 then [Q(z + z) : Q] =
p− 1

2
. Thus, cos

2π

p
∈ O if and only if

p− 1
2

= 2a3b and the proof is complete. �

Exercise. Prove that if 2a3b + 1 is prime, then g.c.d.(a, b) is a power of 2.

Constructibility and Euler’s phi funtion.

We recall (see [4] chapter 1, section 2) that given n ∈ Z we define

φ(n) = card{m ∈ Z | 0 < m < n, g.c.d.(m,n) = 1}
which is called Euler’s phi function. This map has many interesting arithmetic and
analytic properties (see [2]), one of the most important is that it is multiplicative. It

1As somebody said once, “Geometry is the art of correct reasoning on incorrect figures”, so be
careful and do not trust the picture.
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means that if g.c.d(m,n) = 1 then φ(mn) = φ(m)φ(n). As it is easy to prove that
φ(pk) = pk−1(p−1) for every prime p, this gives us (together with the fundamental
theorem of arithmetic) an easy way to calculate φ(n) for every integer. Now we can
prove the following.

Proposition. Let 0 < n ∈ Z. Then the regular polygon with n sides is constructible
by paper folding if and only if φ(n) = 2a3b.

Proof. Let us suppose that P (n) is constructible by paper folding. Then we know
that n = 2r3sp1 . . . pt with pi = 2ai3bi + 1 distinct primes. As we can write φ(n) =
φ(2r)φ(3s)φ(p1) . . . φ(pt) the conclusion follows from our previous considerations.

Not let n be an integer such that φ(n) = 2a3b. We can write n = 2x3ypm3
3 . . . pmt

t

and we have 2a3b = φ(n) = φ(2x)φ(3y)φ(pm3
3 ) . . . φ(pmt

t ) = 2x−13y−1pm3−1
3 (p3 −

1) . . . pmt−1
t (pt − 1). From this, it follows that mi − 1 = 0 for every i ≥ 3 and that

pi − 1 = 2ai3bi and the proof is complete. �
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