DivulgaMAT
Inicio - DivulgaMAT Facebook - DivulgaMAT Twitter - DivulgaMAT

Euler y su prole (Septiembre 2006)
PDF Imprimir Correo electrónico

Euler y su prole

EULER Y SU PROLE

Durante siglos se ha creído, y aún hoy se cree, que Suiza es un país cuya única aportación a la civilización occidental ha sido el reloj de cuco y el chocolate con leche (de ser los guardianes –léase banqueros- de lo que roban todos los ladrones que en el mundo han sido no hablemos, para evitar conflictos diplomáticos). Pero para los matemáticos y los amantes de las matemáticas, Suiza es el país en el que nació Leonhard Euler... y eso ya es suficiente como para redimir a un país, y más si a este nombre se une el del clan de los Bernoulli. Lo cierto es que se supone y se supone bien que la Madre Naturaleza hizo nacer a Euler en Suiza para dignificar al pequeño país centroeuropeo (...que se libra de todas las guerras precisamente porque todos los que las provocan tienen allí guardado su dinero o esperan guardar el que roben, también precisamente, mediante las guerras provocadas).

Aquella tarde de primavera del año 1780, Euler trabajaba en su estudio rodeado de sus 13 hijos, 29 nietos, 9 sobrinos, 34 amigos de los hijos y de los nietos y de unos cuantos vecinos – unos 24, aproximadamente- cuando su mujer, la paciente Madame Euler, entró para servir el té con pastas (12 litros de té y 16 kilos de pastas). En ese momento, al sentir el aroma de la infusión, Euler, dejando a un lado el trabajo en el que estaba inmerso y extendiendo la mano para que le dieran su taza de té, preguntó:

-¿Os he contado alguna vez el encontronazo que tuve con monsieur Diderot en San Petersburgo?

Y a pesar de que todos -hasta Willhem, el nieto más pequeño, que tenía 2 años- habían oído la historia cientos de veces, contestaron al unísono: Pues no, nunca nos la contaste (y la razón es que todos, familiares y amigos, adoraban al matemático por ser la persona más afable, familiar y generosa que conocían... y sabían que le encantaba contar historias sobre su pasado matemático).

-Pues estaba aquí, en San Petersburgo, hace ya unos cuantos años, cuando me enteré que visitaba la Corte Imperial Rusa el enciclopedista francés Denis Diderot. Me dijeron que me criticaba por ser yo un calvinista piadoso que tenía una sólida fe y creía en Dios, ya que él presumía de agnóstico, cuando no de ateo. Así que le cité en la Academia de Ciencias, ante la Emperatriz y toda la Corte, diciéndole que yo estaba en posesión de la demostración algebraica de la existencia de Dios. Cuando llegó, muy orgulloso él, después de los saludos de cortesía, le espeté en francés:

“Monsieur Diderot: Ecuación, donc Dieu existe: répondez!”

Que, más o menos, quiere decir: “Señor Diderot: Ecuación, luego Dios existe, así que: ¡responda!”

Os podéis imaginar que se quedó de piedra, mudo de estupor, pues yo sabía que, a pesar de ser el padre de la Enciclopedia, no andaba muy fuerte en matemáticas. Así que aproveché para rematar la faena y le puse este sencillo problema: “Mi mujer escribe un número entero de menos de treinta cifras y que termina en 2. Yo borro el 2 del final y lo escribo al principio. El número que queda escrito es igual al doble del número que había escrito mi mujer. ¿Qué número escribió mi mujer?”

El caso es que no supo hacer ni siquiera este sencillo problema y se excusó, saliendo de inmediato de la Academia. La verdad es que no lo volví a ver por San Petersburgo, y me dijeron que hasta se había ido de Rusia.

Los 110 presentes –incluida su mujer- rieron por septuagésima quinta vez la anécdota y aplaudieron al final. Y siguieron disfrutando del té con pastas sin darse cuenta que Euler había vuelto a su trabajo, ayudado por uno de sus hijos que escribía lo que su padre le dictaba, con un nieto sentado en cada rodilla y otro encima de sus hombros que, además, se estaban peleando... y él totalmente ausente del caos que se desarrollaba a su alrededor, que ya tiene mérito. Euler tenía el don de la concentración y conseguía, a pesar de que a su alrededor estallara el mundo (y es de suponer que en un hogar con 13 hijos estallaría de vez en cuando) encerrarse en una intensa meditación de la que nada de lo que ocurría a su alrededor podía sacarle. Además, era un hombre de una inmensa curiosidad con interés no sólo en las matemáticas, sino que le apasionaba todo lo relativo a los diversos campos de la ciencia, pero también la teología, la medicina, la astronomía, la física y las lenguas antiguas, modernas y orientales (escribía normalmente en latín y en francés, a pesar de que su lengua materna era el alemán). Y abstraído estaba en sus cálculos cuando escuchó la palabra Eneida, a la vez que alguien lo zarandeaba violentamente para bajarlo de las nubes:

-¿Qué?

-Que dice este señor, que es el nuevo vecino, que es imposible que te sepas la Eneida de memoria –le dijo uno de sus hijos, señalando al recién llegado que ya estaba con su taza de té en la mano.

Y Euler, una vez más, sonriendo ante la expectación levantada a su alrededor, empezó a recitar la obra de Virgilio, hasta que a los tres cuartos de hora, convencido el vecino de que era cierto lo que le habían asegurado, se disculpó para volver a su casa (a tomarse tres medidas de ácido acetilsalicílico) acompañado de la risa de la familia del matemático que despedía así al incrédulo, mientras él volvía a sus cálculos ayudado por tres de sus hijos. (No creo necesario decir, pero lo digo, por si acaso, que en 1738 Euler perdió la vista de su ojo derecho, como consecuencia de su intenso trabajo sobre la realización de un mapa geográfico de Rusia. En 1741 aceptó la invitación de Federico el Grande de Prusia para incorporarse a la Academia de Berlín, ciudad en la que residiría veinticinco años durante los cuales fue perdiendo progresivamente la visión. Catalina la Grande lo llamó en 1766 para que volviese a ocupar su puesto en la Academia de San Petersburgo y ese mismo año supo que estaba perdiendo definitivamente la vista del único ojo sano, así que se preparó para la ceguera total escribiendo sus cálculos sobre una pizarra en grandes caracteres y dictando sus trabajos a sus hijos. A pesar de esta terrible limitación, a lo largo de su vida el matemático publicó mas de 500 libros y artículos. Y la lista de sus obras contiene 886 trabajos, pues produjo una media de unas 800 páginas anuales, lo que le ha convertido en el matemático más prolífico de la historia de esta ciencia.)

Media hora después de que se fuera el aturdido vecino, Euler salió de su meditación empujado esta vez por el ruido ya que, como cada día, 18 de sus 29 nietos y otros tantos amigos suyos hacían cola ante su mesa. El matemático les ayudaba a hacer los deberes escolares así que, dejando a un lado su artículo semanal para la revista de investigación Commentari Academiae Scientiarum Imperiales Petropolitanae -el boletín de la Academia de San Petersburgo que el prolífico Euler, para alegría de sus editores, inundaba con un torrente de artículos matemáticos- y armándose de paciencia, empezó con el primero de la cola.

-A ver, ¿cuál es tu problema?... y nunca mejor dicho.

-Es muy difícil, abuelo –contestó el nieto número 22 en la escala de nietos - te cuento: “¿Qué número es 2/3 del doble del triple de 5?”

-Pero eso es un acertijo más que un problema. Intenta resolverlo tú, que una cosa es que os ayude con los problemas y otra muy distinta es que os los resuelva yo. Y si no lo sabes hacer, te ayudaré. A ver, el siguiente.

Otro de los nietos, el número 14, el que estudiaba el nivel equivalente a 2° del Bachillerato actual (que como aún no se había inventado ni la televisión ni la Play Station dedicaba su tiempo libre a estudiar), preguntó a su abuelo:

-¿Abuelo: es verdad que fuiste tú el que inventó el uso de las letras A, B y C para los ángulos de un triángulo, y de las minúsculas a, b y c para los lados respectivamente opuestos a ellos?

-Sí, ¿por qué?

-Pues porque el profesor de Geometría dice que está encantado con el invento y no para de ponernos problemas de triángulos. Como éste, sin ir más lejos:

Imagen del triángulo

“En la figura parece que la distancia del baricentro G, al ortocentro O es el doble que la distancia de G al circuncentro C. ¿Es cierto?, ¿será casualidad en este triángulo o se verifica en todos?”

-Pero éste problema es muy fácil.

-Será para ti, pero yo llevo una hora dándole vueltas y ni idea... y es que ya me sale humo del cráneo.

-Pues fíjate que curioso –dijo Euler- los griegos ya estudiaron las rectas y los puntos notables de un triángulo que, como sabes, son: el ortocentro, que es el punto de corte de las tres alturas y se le llama punto arquimediano del triángulo, y por algo será; el baricentro, formado por la intersección de las tres medianas y que fue estudiado por Arquímedes en la proposición 13 del primer libro de su obra Sobre el equilibrio de los planos hacia 225 a. de C; el circuncentro, situado en la intersección de las mediatrices y aparece en la proposición 5ª del libro IV de los Elementos del gran Euclides; y el incentro, punto de corte de las bisectrices, que también aparece en la proposición 4ª del mismo libro.

-¡Es increíble! –exclamó el nieto número 14.

-Pues más increíble es que desde los clásicos griegos hasta ahora nadie, absolutamente nadie, se hubiese dado cuenta de que tres de esos cuatro puntos, baricentro, ortocentro y circuncentro, estaban alineados... ¡en cualquier triángulo! El primero que se dio cuenta fui yo, y de paso lo demostré. Y bauticé a esa recta con mi nombre, que con él pasará a la posteridad: la Recta Euler. Bueno, ya está bien; a ver, el siguiente –dijo el matemático, después de resolverle las dudas a su nieto.

Ya había atendido a 12 nietos y a 9 amigos de nietos cuando su hijo mayor entró en el estudio para anunciarle:

-Padre, han llegado dos caballeros franceses que quieren hablar contigo.

Y entraron los dos caballeros que después de saludar cortésmente se sentaron ante el matemático. Euler percibió con toda intensidad el aroma del perfume que, siguiendo la moda de París, exhalaban los recién llegados ya que desde que se quedara totalmente ciego, el matemático había desarrollado notablemente el olfato. Así que, en broma, preguntó a su hijo:

-¿Dos caballeros o dos damas?

Los caballeros franceses rieron la broma, uno más que el otro, hasta que el que menos había reído que, además, era el mayor de los dos, dijo:

-Señor, soy Denis Diderot, al que recordaréis... y vengo a vengarme.

El silencio se cernió sobre el estudio del matemático ante lo que parecía una amenaza. Hasta que el más joven de los recién llegados añadió:

-Nada temáis nada de mi sanguíneo compañero, caballero, ya que habla solamente de venganza intelectual, pues dice que le ridiculizasteis hace unos cuantos años ante toda la corte. Y me ha traído para que le ayude en su venganza ya que yo soy matemático.

-¿Y quién sois vos? –preguntó Euler.

-Joseph Louis Lagrange, para servirle.

-¿Sois el joven Lagrange, el de la famosa Mécanique analityque, considerada por todos como un auténtico poema científico?, ¿el mismo que hace ya unos pocos años me envió una carta con la demostración del problema isoperimétrico? –preguntó Euler.

-El mismo, señor. ¿Y quién sois vos? Porque monsieur Diderot me convenció para que le acompañara pero sin decirme quien era usted.

-Joven Lagrange, soy Leonhard Euler, también para servirle.

-¡¡¡ Euler !!! ¿Sois el gran Euler? –exclamó Lagrange, y se volvió indignado hacia Diderot- ¿Pero cómo no me habíais advertido que me enfrentaría nada menos que al gran Euler?

Los dos matemáticos se levantaron de sus asientos para fundirse en un emotivo abrazo y comenzar a intercambiarse conocimientos hasta que, tres horas después, Diderot, para hacerse presente, carraspeó, tosió y hasta bailó un vals alrededor de los abstraídos matemáticos.

-Tenéis que zarandearlos –propuso el hijo mayor de Euler- Es la única manera de sacarlos de su mundo, por lo menos en lo que se refiere a mi padre, que así es como lo bajamos de las nubes.

Una vez de vuelta a este mundo, ambos matemáticos miraron a Diderot que, timidamente, insinuó:

-Monsieur Lagrange, se supone que habíais venido para ayudarme a vengarme del señor Euler.

-Sin saber que era el señor Euler, así que mi venganza será vengarme de vos... quedándome junto a este genio todo el tiempo que pueda, que no se si sabréis, aunque imagino que no, que mi compañero Pierre Simon Laplace dijo y muy bien dicho: “Leed a Euler, leed a Euler, es el maestro de todos nosotros” –dijo Lagrange dándose media vuelta para seguir hablando con Euler.

-¿Y yo qué hago? –preguntó, desconcertado, Diderot.

-Podéis ir haciendo este problema, que es más difícil que el que os puse hace años –dijo Euler sacando unos naipes y poniéndolos sobre la mesa- Vamos, tomad nota, que es un problema para tahúres, con perdón, y que se llama el “Juego del Trece” o “Reencontré” y estas son las reglas: “Un jugador baraja un paquete de 13 cartas de una baraja francesa desde el As hasta el Rey. Puestas boca abajo comienza a levantarlas de una en una diciendo uno al levantar la primera, dos al levantar la segunda, tres la tercera... y así hasta la décimo tercera carta. Se gana si la carta que se levanta coincide con el número cantado. En 1708, cuando yo tenía solo un año, Pierre Remond de Montmort estudió matemáticamente este juego. ¿A qué conclusión llegó? ¿Apostarías a acertar? ¿Cuál es la probabilidad de ganar?”

Y allí se quedó Diderot, en un extremo de la larga mesa, intentando resolver el nuevo problema, mientras Euler y Lagrange confraternizaban, afianzaban su amistad e intercambiaban conocimientos y problemas. Y la verdad es que les dio tiempo de sobra a confraternizar, a afianzar su amistad y a intercambiar de todo ya que, a los seis meses, Diderot aún seguía sentado al extremo de la mesa del estudio de Euler tratando, sin éxito, de resolver el problema de las 13 cartas boca abajo. Dicen que a su vuelta a París -sin haber resuelto el problema, por supuesto y aunque la Historia no haya dejado testimonio de ello- tuvo problemas con la Justicia ya que incendió todas las fábricas de naipes de la ciudad, sin que quisiera explicarle a los jueces el porqué de su actitud, pues se limitó a contestar: “Pregúntenles a Euler... y Lagrange”.

FIN


Autor: Joaquín Collantes
Asesor matemático: Antonio Pérez Sanz

 

© Real Sociedad Matemática Española. Aviso legal. Desarrollo web