DivulgaMAT
Inicio - DivulgaMAT Facebook - DivulgaMAT Twitter - DivulgaMAT

Gauss, Carl Friedrich (1777-1855) - Página 2
PDF Imprimir Correo electrónico
Escrito por Antonio Pérez Sanz (IES Salvador Dalí, Madrid)   
Índice del artículo
Gauss, Carl Friedrich (1777-1855)
Página 2
Página 3
Página 4
Todas las páginas

“Ligget se!” (¡Aquí está!)

A los siete años, tras serios esfuerzos de Dorothea para convencer al padre, Gauss ingresa en la escuela primaria, una vieja escuela, la Katherinen Volkschule, dirigida por J.G Büttner, donde compartirá aula con otros cien escolares. La disciplina férrea parecía ser el único argumento pedagógico de Büttner, y de casi todos los maestros de la época.
A los nueve años Gauss asiste a su primera clase de Aritmética. Büttner propone a su centenar de pupilos un problema terrible: calcular la suma de los cien primeros números. Nada más terminar de proponer el problema, el jovencito Gauss traza un número en su pizarrín y lo deposita en la mesa del maestro exclamando: “Ligget se!” (¡Ahí está!). Había escrito 5.050. La respuesta correcta.
Ante los ojos atónitos de Büttner y del resto de sus compañeros, Gauss había aplicado, por supuesto sin saberlo, el algoritmo de la suma de los términos de una progresión aritmética. Se había dado cuenta de que la suma de la primera y la última cifra daba el mismo resultado que la suma de la segunda y la penúltima, etc., es decir: 1+ 100 = 2 + 99 = 3 + 98 = ... = 101
Como hay 50 parejas de números de esta forma el resultado se obtendrá multiplicando 101 · 50 = 5.050
“Ligget se!”

Büttner tenía un ayudante, un joven estudiante de 17 años, Martin Bartels, que se encargaba de las clases de escritura de los más pequeños. Pero, por suerte para Gauss y para la ciencia, Bartels era un amante de las matemáticas, y un buen matemático, que acabó obteniendo una cátedra en la universidad de Kazan en la que dio clases de 1808 a 1820 teniendo como alumno a Lobachevski. A pesar de la diferencia de edad, Gauss tenía 10 años, juntos se iniciaron en los caminos de las matemáticas. En los libros de Bartels, Gauss se familiarizó con el binomio de Newton para exponentes no enteros y con las series infinitas e inició los primeros pasos por el análisis.

Con 11 años de edad Gauss dejará la Katherinen Volkschule para ingresar en el Gymnasium Catharineum, a pesar de las reticencias de su padre a que continúe sus estudios. Allí estudia latín y griego y al cabo de dos años accede al grado superior de la enseñanza secundaria. Su fama se empieza a extender por los círculos cultivados de Brunswick y llegará a oídos del duque Karl Wilhelm Ferdinand (1735-1806). Así, en 1791, apadrinado por E.A.W. Zimmerman (1743-1815), profesor de Collegium Carolinum y consejero provincial del duque, éste le recibe en audiencia. Gauss es un adolescente de 14 años que deja impresionado al anciano duque con su habilidad de cálculo. El duque le proporcionará los fondos para que pueda proseguir su formación y le regalará las tablas de logaritmos elaboradas por Johann Carl Schulze.

El 18 de febrero de 1792, antes de cumplir los 15 años hace su inscripción en el Collegium Carolinum de Brunswick. En este colegio da clases de matemáticas y ciencias naturales  E. A W. Von Zimmermann (1743-1815) su valedor ante el duque.

Gauss permanecerá en él hasta 1795, estudiando lenguas clásicas, literatura, filosofía y, por supuesto, matemáticas superiores, siendo un alumno brillante en todas ellas. Entre sus lecturas de matemáticas de esta época están los Principia Mathematica de Newton, el Ars Conjectandi de Jackob Bernoulli y algunas de las memorias de Euler. En el Collegium Carolinum Gauss iniciará alguna de sus futuras investigaciones matemáticas, según sus propias confesiones posteriores, como la distribución de los números primos o los fundamentos de la geometría.

Cuando en el otoño de 1795 se traslada a la Universidad Georgia Augusta de Göttingen, con una beca del Duque. Gauss aún no ha decidido su futuro académico dudando entre los estudios de Filología clásica y las Matemáticas. Las lecciones de matemáticas, no muy buenas según la opinión de Gauss; las impartía el anciano profesor Gotthelf Abraham Kästner que tenía entonces 76 años.
En esta época conoce a Wolfgang (Farkas) Bolyai, que se incorporó a la universidad un año después que él. Gauss, unos años más tarde llegó a afirmar: “Bolyai fue el único que supo interpretar mis criterios metafísicos sobre las Matemáticas”.  Y también que Bolyai fue el “espíritu más complicado que jamás conocí”.
Bolyai es más explícito al hablar de su amistad: “Nos unía la pasión por las Matemáticas y nuestra conciencia moral, y así paseábamos durante largas horas en silencio, cada uno ocupado en sus propios pensamientos”.

Construcción con regla y compás del polígono regular de 17 lados

Desde su llegada a Göttingen el joven Gauss siguió desarrollando de forma autónoma sus investigaciones sobre números que había iniciado en el Collegium. Sin duda más fruto de estas investigaciones que de las enseñanzas de Kästner, cuando Gauss estaba en su casa de Brunswick, se va a producir un descubrimiento que será clave, no sólo en la carrera de Gauss, sino en el futuro de las matemáticas: el heptadecágono, el polígono regular de 17 lados se puede construir con regla y compás. (Construcción)

ImageÉl mismo, muchos años más tarde, recordará el momento, en una carta que dirige a Gerling fechada el 6 de enero de 1819:
“Fue el día 29 de marzo de 1796, durante unas vacaciones en Brunswick, y la casualidad no tuvo la menor participación en ello ya que fue fruto de esforzadas meditaciones; en la mañana del citado día, antes de levantarme de la cama, tuve la suerte de ver con la mayor claridad toda esta correlación, de forma que en el mismo sitio e inmediatamente apliqué al heptadecágono la correspondiente confirmación numérica.”

El día siguiente, el 30 de marzo, justo un mes antes de cumplir los 19 años, Gauss se decantará definitivamente por las matemáticas y hará su primera anotación en su diario de notas, un pequeño cuaderno de 19 páginas, que acompañará a Gauss hasta 1814, el diario científico más importante de la historia de las matemáticas, en el que irá anotando, a veces de forma críptica, los resultados matemáticos que le vienen a la cabeza, en total 144 anotaciones. Por este diario desfilará un alto porcentaje de los descubrimientos matemáticos del siglo XIX. En este libro no fueron recogidos todos los descubrimientos de Gauss en el período prolífico de 1796 a 1814. Pero muchos de los anotados bastarían para establecer la prioridad de Gauss en campos, donde algunos de sus contemporáneos se niegan a creer que Gauss les precediera.
Muchos hallazgos que quedaron enterrados durante décadas en este diario habrían encumbrado a media docena de grandes matemáticos de haber sido publicados. Algunos jamás se hicieron públicos durante la vida de Gauss, y nunca pretendió la prioridad cuando otros autores se le anticiparon. Sus anotaciones constituían descubrimientos esenciales de la Matemática del siglo XIX. Un documento que por desgracia para la ciencia no verá la luz hasta casi 50 años después de la muerte de Gauss

“Principia quibus innititur sectio circuli, ac divisibilitas eiusdem geometrica in septemdecim partes, etc. Mart. 30 Brunsv.”
Con tan sólo 18 años, el joven Gauss había hecho un descubrimiento que por sí solo le habría hecho pasar a la historia de las matemáticas. Un descubrimiento que constituía sólo la punta del iceberg de una teoría mucho más amplia que dará origen tres años más tarde a las Disquisitiones Arithmeticae, obra que Gauss va madurando durante su estancia en la universidad de Gottingën.

Al terminar sus estudios Gauss deja de percibir la subvención del duque y regresa a la casa de sus padres en Brunswick. Por fortuna la situación no duró mucho tiempo. A principios de 1799 el duque le renueva su apoyo económico con la misma cuantía que cuando estaba estudiando. Esto le va a permitir continuar sin preocupaciones monetarias con sus investigaciones matemáticas, en concreto ultimar la obra que recogía todas sus conclusiones sobre los números, las Disquisitiones Arithmeticae. Ahora nos explicamos el encendido prefacio de Gauss manifestando su sincero agradecimiento al duque Karl Wilhelm Ferdinand. Gauss siempre fue una persona agradecida al duque, al fin y al cabo la persona que había hecho posible recibir una formación alejada de sus posibilidades familiares.

El Teorema Fundamental del Álgebra

Pero  los estímulos del duque no acabaron aquí, él mismo sufragará los gastos para que Gauss obtenga el doctorado en filosofía en la universidad de Helmstedt. Gauss leerá su tesis “in absentia” y dispensado del examen oral. El título de su tesis: Demonstratio nova theoremattis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus posse, (Nueva demostración del teorema que dice que toda función algebraica racional puede descomponerse en factores de primer o segundo grado con coeficientes reales).

ImageEl título contiene un ligero error que hará aún más grande al joven Gauss. No es una nueva demostración, es la primera demostración completa de la historia del Teorema fundamental del álgebra. El sueño del gran Euler. El presidente del tribunal es el mejor matemático germano de la época, Johann Friedrich Pfaff.

Que este teorema cautivó a Gauss lo demuestra el hecho de que realizara tres demostraciones más del mismo. La segunda en 1815, basada en las ideas de Euler, rehuye los planteamientos geométricos y es el primer intento serio de una demostración exclusivamente algebraica. En la de 1816 ya utiliza expresamente los números complejos y de paso realiza una crítica a los intentos de otros matemáticos basados en métodos analíticos. La última demostración realizada en 1849 con motivo del cincuentenario de su tesis, es muy similar a la primera, pero en ella Gauss extiende el campo de variación de los coeficientes a los números complejos.

1801. Un año glorioso

El primer año del siglo XIX va a ser testigo del ascenso del joven Gauss, que cuenta con 24 años, a las más altas cimas de la matemática europea con el reconocimiento de toda la comunidad científica. Sus dos cartas de presentación: la publicación de las Disquisitiones Arithmeticae y el cálculo de la órbita de Ceres.

Disquisitiones arithmeticae

Gauss inicia sus investigaciones sobre teoría de números durante su estancia en el Collegium Carolinum, en 1795. Pero acomete la elaboración de las Disquisitiones a lo largo de su estancia en la Universidad de Göttingen entre 1795 y 1798. Lo sabemos gracias a su diario científico en el que ya en 1796 aparecen dos de sus resultados más brillantes: la descomposición de todo número entero en tres triangulares y la construcción del heptadecágono regular. Ambos recogidos en las Disquisitiones.

A finales de 1798 Gauss entregará el manuscrito a un editor de Leipzig, pero dificultades económicas retrasarán la publicación hasta el verano de 1801.

Con las Disquisitiones, Gauss da una nueva orientación a la Teoría de Números, dejando de ser ésta una acumulación de resultados anecdóticos aislados para convertirse en una rama de las matemáticas tan importante como el análisis o la geometría.

En el prefacio, Gauss explica el contenido de esta obra, advirtiendo que tratará sobre los números enteros, excluyendo a menudo los fraccionarios y siempre a los irracionales, los sordos como se les conocía hasta entonces. Su discurso tratará no de los temas de numerar y calcular, de los que se dedica la Aritmética elemental, sino de los aspectos propios de los números enteros de los que se ocupa la Aritmética Superior. En él afirma que en esa época desconocía muchos de los resultados contemporáneos: “desconocía todas las que habían sido elaboradas por los más modernos en este campo y estaba privado de todos los recursos mediante los cuales habría podido ayudarme un poco en estas cuestiones”.

Las Disquisitiones están organizadas en siete secciones:
1. Números congruentes en general
2. Congruencias de primer grado
3. Residuos de potencias
4. Congruencias de segundo grado
5. Formas y ecuaciones indeterminadas de segundo grado
6. Aplicaciones de las nociones anteriores
7. Ecuaciones de las secciones de un círculo.

Un gran descubrimiento, una conquista revolucionaria de notación aritmética: las congruencias
Dados dos números enteros a y b si su diferencia (a - b ó b - a) es exactamente divisible por el número m, decimos que a, b son congruentes respecto al módulo m, y simbolizamos esto escribiendo ab (mód m ) Así, 1002 (mód 7), 352(mód 11).

La ventaja de esta notación es que recuerda la forma en que escribimos las ecuaciones algebraicas, trata la divisibilidad aritmética con una breve notación y permite "sumar, restar, multiplicar… congruencias", con tal de que el módulo sea el mismo en todas, para obtener otras congruencias. Y permite estudiar ecuaciones con congruencias: ax + bc (mód m).

Como colofón a las dos primeras secciones Gauss aplica estos métodos a problemas históricos como el de dado un número A determinar la cantidad de números primos con A y menores que él. Se trata de la célebre función φ(A) introducida por Euler. Dando una fórmula general para su cálculo: Si A = am bn cp... siendo a, b, c, ... primos,
Æ

Y termina con la demostración del teorema fundamental de las congruencias polinómicas
Una congruencia de grado m, Axm + Bxm-1 + ... + Mx + N 0 (mod p)
cuyo módulo p es primo que no divide a A, no puede resolverse de más de m maneras diferentes o no puede tener más de m raíces no congruentes con relación a p.


En la secciones 3ª y 4º Gauss aborda los residuos cuadráticos y de potencias superiores. Dados r y m números enteros donde r no es divisible por m, si existe un número x tal que x2r (mód m), decimos que r es un residuo cuadrático de m, en caso contrario decimos que r es un no-residuo cuadrático de m.
Por ejemplo: 13 es residuo cuadrático de 17, pues la ecuación x2 ≡ 13 (mód 17) tiene soluciones x = 8, 25, 42

Demuestra Art. 49 y 50 el Pequeño Teorema de Fermat:
Si p es un número primo que no divide a a, ap-1 – 1 es siempre divisible por p.
Y el de Wilson:
El producto de todos los números menores que un número primo dado, aumentado en una unidad es siempre divisible por dicho número.

En la sección 4ª Gauss nos proporciona la primera demostración de la ley de reciprocidad cuadrática, a la que denomina Theorema aureum. Art. 131 y siguientes:
Si p es primo de la forma 4n + 1, +p será un residuo o un no-residuo de todo primo que tomado positivamente sea un residuo o un no residuo de p. Si p es de la forma 4n + 3,   -p tiene la misma propiedad.

En un lenguaje más asequible, existe una reciprocidad entre el par de congruencias x2q (mód p),  x2p (mód q) en la que tanto p como q son primos; ambas congruencias son posibles o ambas son imposibles, a no ser que tanto p como q den el resto 3 cuando se dividen por cuatro, en cuyo caso una de las congruencias es posible y la otra no.

Gauss contaba con esta demostración desde 1796, a los 19 años. Euler y Legendre lo habían intentado sin éxito como muy bien comenta el propio Gauss en el art. 151. Sólo por esta demostración Gauss ya debería ser considerado como uno de los matemáticos más potentes de la época. Pero habría más, dentro de la misma obra.

Las secciones 6ª y 7ª tratan de las formas cuadráticas y sus aplicaciones.
Un número entero M puede representarse mediante la expresión ax2 + 2bxy + cy2 = M, donde a, b, c, x e y son números enteros.
A la expresión F = ax2 + 2bxy + cy2 Euler la denominó forma cuadrática.
Euler ya había utilizado las formas cuadráticas para abordar problemas de números enteros. El problema directo consiste en determinar todos los enteros M que se pueden representar por una forma dada. El inverso, y más interesante, consiste en dados M y a, b y c, encontrar los valores de x e y que representan a M.
Para Gauss el objetivo del estudio de formas es demostrar teoremas de teoría de números. Y a lo largo de la sección nos irá proporcionando unas cuantas joyas, algunas de ellas de incalculable valor. Una de ellas le hizo escribir el 16 de julio de 1796, en su diario, una de sus pocas manifestaciones de júbilo:
EURHKA:     Num = Δ + Δ + Δ
imagen

La alegría estaba más que justificada. El joven Gauss acababa de resolver uno de los retos del viejo Fermat. Y no un reto cualquiera; hasta el gran Euler se había estrellado con él. Esta vez Gauss iba a ser el primero en la historia en proporcionar la respuesta a uno de los innumerables enigmas de Fermat:

Todo número entero positivo se puede escribir como suma de tres números triangulares.

La demostración de este resultado aparece en el art. 293 y es una consecuencia del estudio que Gauss realiza de las formas ternarias.

Sección 7ª. De las ecuaciones que definen las secciones del círculo

¿Qué tienen que ver las funciones que dependen del círculo, tan en boga a finales del siglo XVIII, como afirma el propio Gauss en el artículo de introducción de esta sección, con la aritmética superior, con la teoría de números?
El joven Gauss no se resiste a la tentación de incluir una sección que contenga su primer resultado estrella, aquel que en bifurcación vital del Collegium le inclinó a decantar su vida por el camino de las matemáticas en detrimento de las lenguas clásicas: la construcción con regla y compás del polígono regular de 17 lados. Aunque en apariencia este resultado tenga más que ver con la geometría o con el análisis que con la aritmética de números enteros.
Gauss va a dejar para su último artículo, el 366, un resultado que permite decidir los polígonos regulares construibles con regla y compás:
[Para poder seccionar geométricamente el círculo en N partes iguales]... se requiere que N no contenga ningún factor primo impar que no sea de la forma 2m +1, ni tampoco ningún factor primo de la forma 2m +1 más de una vez. De esta forma, se encuentran los 38 valores de N menores que 300:
2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272.


En aquel verano de 1801 Gauss había entrado con todos los honores en el parnaso de los genios matemáticos. A partir de este momento, y como vaticinara Bolyai a su madre en Brunswick, hacía sólo unos pocos años, Gauss se había convertido en el matemático más grande de Europa.

En el invierno también sería uno de los astrónomos más populares del viejo continente.
 

© Real Sociedad Matemática Española. Aviso legal. Desarrollo web