120. (Octubre 2014) Pares contra impares |
Escrito por Pedro Alegría (Universidad del País Vasco) |
Miércoles 01 de Octubre de 2014 |
El principio de paridad, en sus diferentes versiones y adaptaciones, ha sido ampliamente tratado a lo largo y ancho de este rincón, empezando ni más ni menos que con la primera entrega, allá por el mes de marzo de 2004 utilizando una simple hoja de papel. Más tarde, en febrero de 2007, utilizando monedas, y en mayo de 2007, así como en febrero de 2011, utilizando cartas. Sin olvidar el juego más significativo de todos, conocido en el mundo de la magia como el truco del pianista, descrito en febrero de 2012. Si has llegado hasta aquí después de visitar algunos de los enlaces anteriores, te propongo esta tarea: ¿cuál sería para ti la forma más clara y simple de enunciar el principio de paridad? Te agradezco que me envíes tu propuesta y en una entrega posterior publicaré las más convincentes. No hay que dejarse engañar por la simplicidad de este principio. Su multitud de variantes, aplicaciones y generalizaciones pueden llegar a sorprendernos. A modo de ejemplo, el programa Estalmat de Castilla y León, presenta una colección de problemas relacionados con este principio. También, el artículo titulado Cartomagia del 1 al 9, de José Muñoz, publicado en la revista Números, contiene algunos juegos basados en este principio. En el libro "Magia por principios" dedico un capítulo a desarrollar este principio.
Combinando este principio con algunas técnicas menos matemáticas se pueden conseguir juegos que sorprendan a todo tipo de públicos. Como muestra, este mes describiremos un juego de apariencia numérica pero cuyo resultado final permite ocultar el principio de paridad aplicado. Este juego es original de Martin Gardner (cuyo par de siluetas encabeza esta entrega y el centenario de cuyo nacimiento se conmemora este mes) y está inspirado en el primer problema que aparece en el libro "Mathematical Puzzles" de Peter Winkler. El problema se enuncia como sigue: En una mesa se forma una fila con cincuenta monedas, de diferentes valores. Alicia retira una moneda de una de las esquinas y la guarda en su bolsillo; a continuación, Bartolo retira una moneda de una de las esquinas restantes y la guarda en su bolsillo; el proceso se repite hasta que Bartolo retira la última moneda. Probar que Alicia es capaz de jugar para tener al menos la misma cantidad de dinero que Bartolo. El juego que propone Martin Gardner es el siguiente:
La cuestión que se plantea es pues: ya que la predicción dice que ganará el espectador, ¿cómo hacer para que elija "libremente" las cuatro cartas que ocupan las posiciones impares (según nuestro ejemplo) en la fila de cartas? La solución es sencilla: el mago retira la única carta posible de posición par, la octava (jota de picas en nuestro ejemplo). Ahora las cartas de los dos extremos tienen posición impar, con lo que no importa cuál de ellas retira el espectador. El mago vuelve a retirar la carta de posición par que ha quedado libre, y siempre será la que estaba junto a la retirada por el espectador, para dejar sólo cartas de posición impar en los extremos de la fila. El proceso se repite hasta acabar las cartas y comprobar que la predicción es correcta. Algunas modificaciones y variantes de este juego son estudiadas por Colm Mulcahy en la edición de junio de 2006 de su "Card Colm", columna de visita obligada para los filomatemagos. Esta dirección electrónica esta protegida contra spambots. Es necesario activar Javascript para visualizarla |
© Real Sociedad Matemática Española. Aviso legal. Desarrollo web |